BOARD QUESTION PAPER : MARCH 2018
 GEOMETRY

Time: 2 Hours

Max. Marks: 40

Note:

i. Solve all questions. Draw diagrams wherever necessary.
ii. Use of calculator is not allowed.
iii. Figures to the right indicate full marks.
Q.P. SET CODE

B
iv. Marks of constructions should be distinct. They should not be rubbed off.
v. Diagram is essential for writing the proof of the theorem.

1. Attempt any five sub-questions from the following :
i. $\triangle \mathrm{DEF} \sim \triangle \mathrm{MNK}$. If $\mathrm{DE}=5$ and $\mathrm{MN}=6$, then find the value of $\frac{\mathrm{A}(\triangle \mathrm{DEF})}{\mathrm{A}(\triangle \mathrm{MNK})}$.
ii. If two circles with radii 8 cm and 3 cm respectively touch externally, then find the distance between their centres.
iii. Find the length of the altitude of an equilateral triangle with side 6 cm .
iv. If $\theta=45^{\circ}$, then find $\tan \theta$.
v. Slope of a line is 3 and y intercept is -4 . Write the equation of a line.
vi. Using Euler's formula, find V, if $E=30, F=12$.
2. Attempt any four sub-questions from the following :
i. The ratio of the areas of two triangles with common base is $4: 3$. Height of the larger triangle is 6 cm , then find the corresponding height of the smaller triangle.
ii. In the following figure, point ' A ' is the centre of the circle. Line MN is tangent at point M . If $\mathrm{AN}=12 \mathrm{~cm}$ and $\mathrm{MN}=6 \mathrm{~cm}$, determine the radius of the circle.

iii. Draw $\angle \mathrm{PQR}$ of measure 70° and bisect it.
iv. If $\cos \theta=\frac{3}{5}$, where ' θ ' is an acute angle. Find the value of $\sin \theta$.
v. The volume of a cube is $1000 \mathrm{~cm}^{3}$. Find its side.
vi. The radius and slant height of a cone are 4 cm and 25 cm respectively. Find the curved surface area of that cone. $(\pi=3.14)$
3. Attempt any three sub-questions from the following :
i. In the following figure, seg $\mathrm{DH} \perp$ seg EF and seg $\mathrm{GK} \perp$ seg EF . If $\mathrm{DH}=6 \mathrm{~cm}, \mathrm{GK}=10 \mathrm{~cm}$ and $\mathrm{A}(\triangle \mathrm{DEF})=150 \mathrm{~cm}^{2}$, then find :
i. EF
ii. $\quad \mathrm{A}(\triangle \mathrm{GEF})$
iii. $\mathrm{A}(\square \mathrm{DFGE})$.

ii. In the following figure, ray PA is the tangent to the circle at point A and PBC is a secant. If $A P=14, B P=10$, then find $B C$.

iii. Draw the circle with centre C and radius 3.6 cm . Take point B which is at distance 7.2 cm from the centre. Draw tangents to the circle from point B.
iv. Show that: $\sqrt{\frac{1-\sin x}{1+\sin x}}=\sec x-\tan x$.
v. Write the equation of the line passing through points $\mathrm{C}(4,-5)$ and $\mathrm{D}(-1,-2)$ in the form of $a x+b y+c=0$.
4. Attempt any two sub-questions from the following :
i. Prove that, "the lengths of the two tangent segments to a circle drawn from an external point are equal".
ii. A tree is broken by the wind. The top of that tree struck the ground at an angle of 30° and at a distance of 30 m from the root. Find the height of the whole tree. $(\sqrt{3}=1.73)$
iii. $A(5,4), B(-3,-2)$ and $C(1,-8)$ are the vertices of a triangle $A B C$. Find the equation of median AD.
5. Attempt any two sub-questions from the following :
i. Prove that, in a right-angled triangle, the square of hypotenuse is equal to the sum of the
square of remaining two sides.
ii. $\quad \triangle \mathrm{SHR} \sim \triangle \mathrm{SVU}$, in $\triangle \mathrm{SHR}, \mathrm{SH}=4.5 \mathrm{~cm}, \mathrm{HR}=5.2 \mathrm{~cm}, \mathrm{SR}=5.8 \mathrm{~cm}$ and $\frac{\mathrm{SH}}{\mathrm{SV}}=\frac{3}{5}$. Construct \triangle SVU.
iii. If ' V ' is the volume of a cuboid of dimensions $a \times b \times c$ and ' S ' is its surface area, then prove that:
$\frac{1}{\mathrm{~V}}=\frac{2}{\mathrm{~S}}\left[\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}\right]$.
