BOARD QUESTION PAPER: JULY 2024 MATHEMATICS AND STATISTICS

Time: 3 Hrs. Max. Marks: 80

General instructions:

- All questions are compulsory. (i)
- (ii) There are 6 questions divided into two sections.
- (iii) Write answers of Section-I and Section-II in the same answer book.
- (iv) Use of logarithmic tables is allowed. Use of calculator is not allowed.
- (v) For L.P.P. graph paper is not necessary. Only rough sketch of graph is expected.
- (vi) Start answer to each question on a new page.
- (vii) For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabetical letter eg.
 - answer or the alphabet of the correct answer is written. Only the first attempt will be considered for evaluation.

Section - I

Select and write the correct answer of the following multiple choice type of questions Q.1. (A) [12] (1 mark each): **(6)**

- i. Which of the following sentences is a statement in logic:
 - (A) He is a good actor.
 - Did you eat lunch yet?
 - Every real number is a complex number.
 - (D) Bring the motor car here.

ii. If
$$y = 2x^2 + \log 2 + 5$$
 then $\frac{dy}{dx} =$ _____.

- (A) x
- (B) 4x

- (C) $2x + \log 2$

iii. If
$$x = 2at^2$$
, $y = 4at$ then $\frac{dy}{dx} =$ ____.

- (A) $-\frac{1}{2at^2}$ (B) $\frac{1}{2at^3}$
- (C) $\frac{1}{\cdot}$

iv. The equation of tangent to the curve
$$y = x^2 + 4x + 1$$
 at P(-1, -2) is _____.

(A) 2x - y = 0

(B) x + 2y + 5 = 0

(C) 2x + 4 = 3v

(D) 5x + y = 1

v.
$$\int_{-2}^{3} \frac{dx}{x+5} =$$
_____.

- (A) $-\log\left(\frac{8}{3}\right)$ (B) $3\log\left(\frac{3}{8}\right)$ (C) $\log\left(\frac{8}{3}\right)$ (D) $-2\log\left(\frac{3}{8}\right)$

vi. The order and degree of the differential equation
$$\frac{d^2x}{dt^2} + \left(\frac{dx}{dt}\right)^2 + 8 = 0$$
 are _____.

(A) order = 2, degree = 2

(B) order = 1, degree = 2

order = 1, degree = 1(C)

(D) order = 2, degree = 1

State whether the following statements are true or false (1 mark each): **(B)** (3) i. Every identity matrix is a scalar matrix. The rate of change of demand (x) of a commodity w.r.t. its price (y) is $\frac{dy}{dx}$ ii. The integrating factor of $\frac{dy}{dx} - y = x$ is e^x . iii. **(C)** Fill in the following blanks (1 mark each): (3)If y = x. log x then $\frac{d^2y}{dx^2}$ _____. i. If the marginal revenue $R_m = 40$ and elasticity of demand η is 5, then the average revenue R_A ii. Area of the region bounded by $y = x^4$, x = 1, x = 5 and the X-axis will be iii. Q.2. (A) Attempt any TWO of the following questions (3 marks each): (6)[14]Write converse, inverse and contrapositive of the following statement: If the train reaches on time then I catch the connecting flight. If $A = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & a \\ -1 & b \end{bmatrix}$ and if $(A + B)^2 = A^2 + B^2$, find value of a and b. ii. Find $\frac{dy}{dx}$, if $y = (x)^x + (a)^x$ iii. **(B)** Attempt any TWO of the following questions (4 marks each): (8)Evaluate: $\int \frac{x}{4x^4 - 20x^2 - 3} dx$ i. Evaluate: $\int_{1}^{3} \log dx$ ii. iii. In a certain culture of bacteria, their rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours. Attempt any TWO of the following questions (3 marks each): Q.3. (A) (6)[14]A metal wire of 36 cm length is bent to form a rectangle. Find its dimensions when its area is maximum. Evaluate: $\int \frac{2x+1}{x(x-1)(x-4)} dx$ ii. Find the area of region bounded by $y^2 = 25x$ and the line x = 4. iii. **(B)** Attempt any ONE of the following questions (4 marks each): **(4)** Using the truth table, verify: i. $\sim (p \rightarrow \sim q) \equiv p \land \sim (\sim q) \equiv p \land q$ Solve the following equations by method of inversion: ii. x + y + z = 1, x - y + z = 2, x + y - z = 3Attempt any ONE of the following questions (Activity) (4 marks each): **(C) (4)** The cost C for producing x articles is given as $C = x^3 - 16x^2 + 47x$. For what values of x the average cost is decreasing? Solution: Given $C = x^3 - 16x^2 + 47x$ Average cost $C_A = \frac{C}{r}$

: .

 $C_A = \boxed{}$

		Differentiating w.r.t. x, we get	
		$\frac{d}{dx}(C_A) = $	
		$dx \stackrel{C_A}{}$ We know that C_A is decreasing	
		if $\frac{d}{dx}(C_A)$ 0	
	∴ ∴	2x - 16 < 0 $2x < 16$	
	·· ∴	$x < \boxed{}$	
	<i>:</i> .	Average cost is decreasing for $x \in (0, 8)$	
	ii.	Solve the differential equation:	
		$y - x \frac{dy}{dx} = 0$	
		Solution:	
		Given equation is $y - x \frac{dy}{dx} = 0$	
		Separating the variables we get	
		$\frac{\mathrm{d}x}{\Box} = \frac{\mathrm{d}y}{\Box}$	
		Integrating we get,	
		$\int \frac{\mathrm{d}x}{\Box} = \int \frac{\mathrm{d}y}{\Box} + c$	
	<i>:</i> .	$\log x = \boxed{ + c}$	
	<i>∴</i>	$\log x - \log y = \log c_1, \text{ Where } c = \log c_1$	
	<i>:</i> .	$\log\left(\frac{x}{v}\right) = \log c_1$	
		(y)	
	<i>:</i> .	$\frac{x}{\Box} = c_1$	
		Hence the required solution is $x = c_1 y$	
		Section – II	
Q.4.	(A)	Select and write the correct answer of the following multiple choice type of questions	[12]
	•	(1 mark each):	(6)
	i.	The date on which the period of the bill expires is called (A) Legal due date (B) Grace date	
		(C) Nominal due date (D) Date of drawing	
	ii.	A person insured a property of ₹ 4,00,000. The rate of premium is ₹ 35 per thousand p.a.	
		The amount of annual premium is (A) $\stackrel{?}{\stackrel{?}{\sim}} 14,000$ (B) $\stackrel{?}{\stackrel{?}{\sim}} 24,000$	
		(C) ₹ 34,000 (D) ₹ 15,000	
	iii.	Paasche's Price Index Number is given by	
		(A) $\frac{\sum p_0 q_0}{\sum p_1 q_0} \times 100$ (B) $\frac{\sum p_0 q_1}{\sum p_1 q_1} \times 100$	
		(C) $\frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$ (D) $\frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$	
		$\frac{\sum p_0 q_0}{\sum p_0 q_1} \times 100$	
	iv.	If jobs I, II, III have processing times as $8, 6, 5$ on machine M_1 and $8, 3, 4$ on machine M_2 in	
		the order M ₁ -M ₂ . Then the optimal sequence is (A) I II III (B) I III II	
		(C) II I III (D) III II I	

v.	If $E(X) = 4$ and X follows Poisson's distribution	th	$en V(X) = \underline{\hspace{1cm}}.$	
	$(A) 2 \qquad \qquad (I$	3)	-2	
	(C) 4 (I	O)	-4	
vi.	Three coins are tossed simultaneously. X is the X is	nur	nber of heads. Then the expected value of	
		3)	1.5	
	(C) 1.9 (I	O)	1.017	
(B) i.	State whether the following statements are true. In the regression of Y on X, X is the independent		,	(3)
ii.	The region represented by the inequalities $x \le 0$,	<i>y</i> ≤	0 lies in the first quadrant.	
iii.	In an assignment problem, if the number of coludummy column is added.	ımı	ns are greater than number of rows, then a	
(C) i.	Fill in the following blanks (1 mark each): If an agent charges 12% commission on the sa ₹	les	of ₹ 48,000 then his total commission is	(3)
ii.	The optimal value of the objective function is region.	att	ained at the points of feasible	
iii.	Given p.d.f. of a continuous random variable X i	s,		
	$f(x) = \frac{x}{8}$, for $0 < x < 4$			
	= 0, otherwise			
	then $P(1 < x < 2) = $			
(A)	Attempt any TWO of the following questions	(3 1	narks each)·	(6) [14]

Attempt any TWO of the following questions (3 marks each):

- Find the rate of interest compounded annually if an immediate annuity of ₹ 20,000 per year amounts to ₹ 41,000 in 2 years.
- ii. Find the Value Index Number using Simple Aggregate Method for the following data:

Commodite	Base	Year	Current Year			
Commodity	Price	Quantity	Price	Quantity		
A	30	22	40	18		
В	40	16	60	12		
C	10	38	15	24		
D	50	12	60	16		
Е	20	28	25	36		

iii. Five jobs must pass through a lathe and a surface grinder, in that order. The processing times in hours are shown below. Determine the optimal sequence of the jobs. Also find the total elapsed time:

Jobs	I	II	III	IV	\mathbf{V}
Lathe	4	1	5	2	5
Surface grinder	3	2	4	3	6

(B)

(8)

- Attempt any TWO of the following questions (4 marks each): A bill was drawn on 14^{th} April for ₹ 7,000 and was discounted on 6^{th} July at 5% p.a. i. The banker paid ₹ 6,930 for the bills. Find the period of the bill.
- The following table gives the production of steel (in millions of tons) for years 1976 to 1986: ii.

Year	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Production	0	4	4	2	6	8	5	9	4	10	10

Fit a trend line to the above data by the method of least squares.

iii. Solve the following L.P.P by graphical method:

Maximize: z = 7x + 11y

Subject to: $3x + 4y \le 24$,

 $5x + 3y \le 30,$

x > 0, y > 0

Q.6. (A) Attempt any TWO of the following questions (3 marks each):

(6)[14]

i. For a bivariate data, $\bar{x} = 53$, $\bar{y} = 28$, $b_{vx} = 1.2$, $b_{xy} = -0.3$

Find: (a) Correlation coefficient between x and y.

(b) Estimate y for x = 50.

- ii. Given that $\sum p_0 q_0 = 220$, $\sum p_0 q_1 = 380$, $\sum p_1 q_1 = 350$ and Marshall-Edgeworth's Price Index Number is 150, find Laspeyre's Price Index Number.
- iii. The following data gives the production of bleaching powder (in '000 tons) for the years 1962 to 1972:

Year	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Production	0	0	1	1	4	2	4	9	7	10	8

Obtain the trend values for the above data using 5 yearly moving averages.

(B) Attempt any ONE of the following questions (4 marks each):

(4)

i. Four new machines M₁, M₂, M₃ and M₄ are to be installed in a machine shop. There are five vacant places A, B, C, D and E available. Because of limited space, machine M₂ cannot be placed at C and M₃ cannot be placed at A. The cost matrix is given below.

Machines	Places									
Machines	Α	В	C	D	E					
M_1	4	6	10	5	6					
$egin{array}{c} M_2 \ M_3 \end{array}$	7	4	-	5	4					
M_3	_	6	9	6	2					
M_4	9	3	7	2	3					

Find the optimal assignment schedule.

ii. There are 10% defective items in a large bulk of items. What is the probability that a sample of 4 items will include not more than one defective item?

(C) Attempt any ONE of the following questions (Activity) (4 marks each):

(4)

i. The equations of the two regression lines are 3x + 2y - 26 = 0 and 6x + y - 31 = 0. Obtain the correlation coefficient between x and y.

Solution:

To find correlation coefficient, we have to find the regression coefficients b_{yx} and b_{xy} .

Let 3x + 2y = 26 be equation of the line of regression of y on x.

This gives y = x + 13

$$\therefore b_{yx} = -\frac{3}{2}$$

Now consider 6x + y = 31 as equation of the line of regression of x on y.

This can be written as x = $y + \frac{31}{6}$

$$\therefore b_{xy} = -\frac{1}{6}$$

Now
$$r^2 = \boxed{} = 0.25$$

As both b_{yx} and b_{xy} are negative,

ii. The probability distribution of X is as follows:

x	0	1	2	3	4
P(X = x)	0.1	k	2k	2k	k

Find: (a)

- (a) k(b) P(X < 2)
- (c) $P(1 \le X \le 4)$
- (d) F(2)

Solution:

The table gives a probability distribution.

$$\therefore \qquad \sum p_i = 1$$

$$\therefore 0.1 + k + 2k + 2k + k = 1$$

(c)
$$P(1 \le X < 4) = P(1) + P(2) + P(3)$$

=

(d)
$$F(2) = P(X \le 2)$$

= $P(0) + P(1) + P(2)$
=